Main menu

Pages

Spatial Statistics Tools ArcToolbox

An overview of the Spatial Statistics toolbox

(ArcGIS, ArcToolbox) Tools

  1. The Spatial Statistics toolbox contains statistical tools for analyzing spatial distributions, patterns, processes, and relationships. While there may be similarities between spatial and nonspatial (traditional) statistics in terms of concepts and objectives, spatial statistics are unique in that they were developed specifically for use with geographic data. Unlike traditional nonspatial statistical methods, they incorporate space (proximity, area,
    connectivity, and/or other spatial relationships) directly into their mathematics.
  2. The tools in the Spatial Statistics toolbox allow you to summarize the salient characteristics of a spatial distribution (determine the mean center or overarching directional trend,
  3. for example), identify statistically significant spatial clusters (hot spots/cold spots) or spatial outliers, assess overall patterns of clustering or dispersion, group features based on attribute similarities, identify an appropriate scale of analysis, and explore spatial relationships. In addition, for those tools written with Python, the source code is available to encourage you to learn from, modify, extend, and/or share these and other analysis tools with others.

An overview of the Spatial Statistics toolbox



  • Toolset of the Spatial Statistics toolbox:

1. Analyzing Patterns

These tools evaluate if features, or the values associated with features, form a clustered, dispersed, or random spatial pattern.

2. Mapping Clusters

These tools may be used to identify statistically significant hot spots, cold spots, or spatial outliers. There are also tools to identify or group features with similar characteristics.

3. Measuring Geographic Distributions

These tools address questions such as Where's the center? What's the shape and orientation? How dispersed are the features?

4. Modeling Spatial Relationships

These tools model data relationships using regression analyses or construct spatial weights matrices.

5. Utilities

These utility tools perform a variety of miscellaneous functions: computing areas, assessing minimum distances, exporting variables and geometry, converting spatial weights files, and collecting coincident points.

Comments

table of contents title